3.144 \(\int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=158 \[ \frac{a^2 (A+3 B) \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{2 c f \sqrt{c-c \sin (e+f x)}}+\frac{(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}} \]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(2*f*(c - c*Sin[e + f*x])^(3/2)) + (a^2*(A + 3*B)*Cos[e + f*
x]*Log[1 - Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (a*(A + 3*B)*Cos[e + f*x]*
Sqrt[a + a*Sin[e + f*x]])/(2*c*f*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.385151, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {2972, 2740, 2737, 2667, 31} \[ \frac{a^2 (A+3 B) \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{2 c f \sqrt{c-c \sin (e+f x)}}+\frac{(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(2*f*(c - c*Sin[e + f*x])^(3/2)) + (a^2*(A + 3*B)*Cos[e + f*
x]*Log[1 - Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (a*(A + 3*B)*Cos[e + f*x]*
Sqrt[a + a*Sin[e + f*x]])/(2*c*f*Sqrt[c - c*Sin[e + f*x]])

Rule 2972

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}} \, dx &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}}-\frac{(A+3 B) \int \frac{(a+a \sin (e+f x))^{3/2}}{\sqrt{c-c \sin (e+f x)}} \, dx}{2 c}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{2 c f \sqrt{c-c \sin (e+f x)}}-\frac{(a (A+3 B)) \int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{2 c f \sqrt{c-c \sin (e+f x)}}-\frac{\left (a^2 (A+3 B) \cos (e+f x)\right ) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{2 c f \sqrt{c-c \sin (e+f x)}}+\frac{\left (a^2 (A+3 B) \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f (c-c \sin (e+f x))^{3/2}}+\frac{a^2 (A+3 B) \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{a (A+3 B) \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{2 c f \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.905223, size = 210, normalized size = 1.33 \[ -\frac{a \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (-2 \sin (e+f x) \left (2 (A+3 B) \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )-B\right )+4 A \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+4 A+B \cos (2 (e+f x))+12 B \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+3 B\right )}{2 c f (\sin (e+f x)-1) \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-(a*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(4*A + 3*B + B*Cos[2*(e + f*x)] + 4*A*Log
[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + 12*B*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - 2*(-B + 2*(A + 3*B)*Lo
g[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]])*Sin[e + f*x]))/(2*c*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[
e + f*x])*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.288, size = 749, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(3/2),x)

[Out]

-1/f*(2*A+4*B-2*A*sin(f*x+e)-2*A*cos(f*x+e)^2-A*cos(f*x+e)*ln(2/(cos(f*x+e)+1))-3*B*cos(f*x+e)^2*ln(2/(cos(f*x
+e)+1))+B*cos(f*x+e)^2*sin(f*x+e)-2*A*cos(f*x+e)*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+A*cos(f
*x+e)*sin(f*x+e)*ln(2/(cos(f*x+e)+1))+2*A*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+6*B*cos(f*x+e)
^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*cos(f*x+e)^3-B*cos(f*x+e)+3*B*ln(2/(cos(f*x+e)+1))*sin(f*x+e)*
cos(f*x+e)-6*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)*cos(f*x+e)-2*A*sin(f*x+e)*ln(2/(cos(f*x+e
)+1))+4*A*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+3*B*sin(f*x+e)*cos(f*x+e)-3*B*cos(f*x+e)*ln(2/
(cos(f*x+e)+1))+6*B*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-6*B*sin(f*x+e)*ln(2/(cos(f*x+e)+1))+
12*B*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*A*sin(f*x+e)*cos(f*x+e)+2*A*cos(f*x+e)^2*ln(-(-1+
cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-A*cos(f*x+e)^2*ln(2/(cos(f*x+e)+1))-4*B*cos(f*x+e)^2+2*A*ln(2/(cos(f*x+e)+1
))-4*A*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+6*B*ln(2/(cos(f*x+e)+1))-12*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))
/sin(f*x+e))-4*B*sin(f*x+e))*(a*(1+sin(f*x+e)))^(3/2)/(sin(f*x+e)*cos(f*x+e)+cos(f*x+e)^2-2*sin(f*x+e)+cos(f*x
+e)-2)/(-c*(-1+sin(f*x+e)))^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 1.57983, size = 494, normalized size = 3.13 \begin{align*} -\frac{B{\left (\frac{6 \, a^{\frac{3}{2}} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{c^{\frac{3}{2}}} - \frac{3 \, a^{\frac{3}{2}} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{c^{\frac{3}{2}}} + \frac{2 \,{\left (\frac{3 \, a^{\frac{3}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac{2 \, a^{\frac{3}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{3 \, a^{\frac{3}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )}}{c^{\frac{3}{2}} - \frac{2 \, c^{\frac{3}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{2 \, c^{\frac{3}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac{2 \, c^{\frac{3}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac{c^{\frac{3}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}}\right )} + A{\left (\frac{2 \, a^{\frac{3}{2}} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{c^{\frac{3}{2}}} - \frac{a^{\frac{3}{2}} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{c^{\frac{3}{2}}} + \frac{4 \, a^{\frac{3}{2}} \sqrt{c} \sin \left (f x + e\right )}{{\left (c^{2} - \frac{2 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (f x + e\right ) + 1\right )}}\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-(B*(6*a^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/c^(3/2) - 3*a^(3/2)*log(sin(f*x + e)^2/(cos(f*x + e) +
 1)^2 + 1)/c^(3/2) + 2*(3*a^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) - 2*a^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1
)^2 + 3*a^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(c^(3/2) - 2*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 2*
c^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 2*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + c^(3/2)*sin(f*x
+ e)^4/(cos(f*x + e) + 1)^4)) + A*(2*a^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/c^(3/2) - a^(3/2)*log(si
n(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)/c^(3/2) + 4*a^(3/2)*sqrt(c)*sin(f*x + e)/((c^2 - 2*c^2*sin(f*x + e)/(co
s(f*x + e) + 1) + c^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) + 1))))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B a \cos \left (f x + e\right )^{2} -{\left (A + B\right )} a \sin \left (f x + e\right ) -{\left (A + B\right )} a\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \sin \left (f x + e\right ) - 2 \, c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((B*a*cos(f*x + e)^2 - (A + B)*a*sin(f*x + e) - (A + B)*a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x +
e) + c)/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(3/2), x)